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Abstract. We study how the Mott metal-insulator transition (MIT) is influenced when we deal with elec-
trons with different angular momenta. For lithium we found an essential effect when we include p-orbitals
in the description of the Hilbert space. We apply quantum-chemical methods to sodium rings and chains in
order to investigate the analogue of a MIT, and how it is influenced by periodic and open boundaries. By
changing the interatomic distance we analyse the character of the many-body wavefunction and the charge
gap. In the second part we mimic a behaviour found in the ionic Hubbard model, where a transition from
a band to a Mott insulator occurs. For that purpose we perform calculations for mixed sodium-lithium
rings. In addition, we examine the question of bond alternation for the pure sodium system and the mixed
sodium-lithium system, in order to determine under which conditions a Peierls distortion occurs.

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 71.10.Fd Lattice fermion
models (Hubbard model, etc.) – 31.25.Qm Electron correlation calculations for polyatomic molecules

1 Introduction

The metal-insulator transition is relatively well under-
stood in the picture of the Hubbard model (for an overview
and references see, e.g., [1]). There, the transition is driven
by the ratio of the on-site Coulomb interaction U and the
hopping term t. However in realistic systems it is nor-
mally insufficient to model the electronic structure with
a single hopping term and an on-site Coulomb term. Fur-
thermore the question arises how orbitals with different
angular momentum quantum numbers influence the MIT.
In the single-band Hubbard model only one s-type or-
bital per site is supplied. It was found [2] using quantum
chemical ab initio methods that for lithium rings the in-
clusion of orbitals with p character is essential to describe
quantitatively the MIT in this system. If the p orbitals
are neglected, the MIT occurs at a different position in
the parameter space and the energy gap in the insulat-
ing regime is much smaller. We model the ratio U

t via the
interatomic distance, where an increasing distance leads
to a decreasing hopping. The on-site U stays constant.
The MIT occurs in a region of interatomic distances where
the many-body wavefunction changes its character rapidly
from significant p contribution to purely s contribution.

In the present publication we analyse the MIT in pure
sodium systems and a mixed sodium-lithium system. The
latter is a ring with alternating Na and Li atoms, chosen
to mimic the situation encountered in the ionic Hubbard
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model [3–5]. There we have, for small interatomic dis-
tances, a band insulator. When increasing the interatomic
distance sufficiently a transition to a Mott insulator oc-
curs. In addition we extend our studies from periodic
boundary condition (Na rings) to open boundary condi-
tions (Na chains). The charge gap (ionisation potential
minus electron affinity) and the static electric dipole po-
larisability are calculated as a function of the interatomic
distance. The polarisability can be used as a measure for
the MIT as pointed out by Resta and Sorella [6]. Fur-
thermore the question of a possible Peierls distortion [7]
is addressed. An insulator can also be formed due to the
electron-phonon coupling, where a lattice distortion yields
a lower ground state energy than equidistant arrangement
of the atoms.

The paper is organized as follows: In Section 2 we
present some technical details and results for the Na2 and
the NaLi dimer. In Section 3 we discuss the influence of the
boundary conditions in the pure Na systems and in Sec-
tion 4 we examine the mixed NaLi system. Conclusions
follow in Section 5.

2 Technical details

2.1 Basis sets

Mostly Gaussian type basis sets are used in quantum
chemical ab initio methods to model the Hilbert space. For
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lithium a contracted [4s1p] basis was used [2], that was suf-
ficient to describe the main feature of the system (quasi-
degenerate s and p orbitals, negatively charged ions) with-
out extreme computational costs. The selection of a proper
basis set for sodium and the question of whether the use
of a large-core pseudopotential is sensible for describing
the core electrons is addressed in this section.

All calculations are performed with the program
package MOLPRO [8–10]. Starting from a mean-field
Hartree-Fock (HF) description, we reoptimise the va-
lence wavefunction in multi-configuration self-consistent-
field (MCSCF) calculations, keeping for most of the com-
putations the 1s22s2p6 core electrons frozen at the HF
level, if not indicated otherwise. In this way the number
of valence active-space orbitals is chosen to be equal to (or
larger than) the number of Na atoms of the system, and
all possible occupancies of these orbitals are accounted
for. With this choice, we can properly describe the disso-
ciation limit where each atom has one valence electron.
On top of the MCSCF calculations, we apply the multi-
reference averaged coupled pair functional (MRACPF)
method [11,12] to deal with the dynamical correlations.
Here, all configuration-state functions are included which
can be generated from the MCSCF reference wavefunction
by means of single and double excitations from the active
orbitals.

We calculate the ionisation potential (IP), the elec-
tron affinity (EA) and the dipole polarisability of the Na
atom. In all calculations the core-valence correlations are
neglected. We use a 10-electron pseudopotential [13] for
Na and the corresponding basis set is derived as follows.
A contracted [2s2p] basis is supplied with the pseudopo-
tential [13]. An extra diffuse s-function is added (expo-
nent 0.0094) resulting in the [3s2p] basis. For the final
[3s1p] basis we neglect the second diffuse p function and
recalculate the contraction coefficients for the remaining p
function from the 2P state at HF level. The IP agrees well
with experiment [14] (error ≈ 3.7%). With our basis we
obtain 88% of the experimental EA [14]. The polarisability
is overestimated by about 15%, however it is known [15]
that for this property the core-valence correlations are im-
portant. Although our basis is relatively small we can nev-
ertheless describe all quantities we are interested in with
sufficient accuracy.

2.2 Na2 and NaLi dimers

For the dimers we perform MCSCF calculations with an
active space of 4 orbitals (the occupation number of the
corresponding natural orbitals is larger than 0.2) with the
atomic closed shells kept frozen. On top of this MCSCF
calculation a MRACPF calculation provides the dynami-
cal correlation. The results for the Na2 dimer and the NaLi
dimer are listed in Table 1. With our selected basis set
ecp[3s1p] for Na and [4s1p] for Li the dimer bond lengths
are significantly too large. Both additional p functions and
a d polarization function (data not in the table) reduce the
dimer equilibrium distance by about 0.1 Å. Core-valence
correlations, treated at the MRACPF level with the same

Table 1. The equilibrium distance ddimer in Å,the static dipole
polarisability per molecule perpendicular to the bond αxx and
in bond direction αzz in a.u. and the permanent dipole moment
µ in a.u. are listed for Na2 and a NaLi dimer. The static dipole
polarisability and permanent dipole moment are calculated at
the experimental dimer distance. The values are determined
for different basis sets and compared with experiment and lit-
erature.

basis ddimer αxx αzz µ

Na2 ecp[3s1p] 3.392 219.5 469.5

ecp[3s2p] 3.310 211.6 449.2

exp [16] 3.08 αmol = 270

CISD(22e) [18] 3.09 207.8 360.4

NaLi ecp[3s1p],[4s1p] 3.106 180.3 387.0 0.649

ecp[3s2p],[4s2p] 3.036 181.1 395.1 0.565

exp [17] 2.89 αmol = 263 0.193

CISD(14e) [18] 2.90 189.0 325.6 0.189

basis as for the atom, reduce the dimer bond length fur-
ther, close to the experimental value [16,17]. The static
dipole polarisability is not strongly dependent on the ba-
sis set used. Additional polarization functions reduce it
slightly, by about 10%, and the core-valence correlations
have an influence below 3% within the basis we applied.
But the core-valence correlations have a large influence
on the permanent dipole moment, where they reduce the
dipole moment by more than a factor of 2. When compar-
ing with experiment, for Na2 the polarisability is overesti-
mated by only 12% (even for the smallest basis applied),
for the NaLi dimer the best basis set applied including
core-valence correlations underestimates the experimental
value by 9%. The same was found by Antoine et al. [18]
with CISD calculations. Although the dimer data are not
fully satisfying (for better agreement with experiment we
have to increase the basis set further and discuss different
correlations methods) we can show that our selected ba-
sis set is sufficient to describe the main properties of the
dimers and therefore of bound systems which we want to
analyse in the following sections. It is not our purpose to
produce very good dimer data.

3 The MIT in the pure Na system
with different boundary conditions

3.1 Na10 ring and Na10 chain at the equilibrium
distance

To compare open and periodic boundary conditions we
have selected the equidistant Na10 chain and the equidis-
tant Na10 ring. As reference interatomic distance a0 we
have chosen the Na-Na distance from the 3-dimensional
crystal (3.659 Å) [19]. We calculate the equilibrium inter-
atomic distance and the cohesive energy per atom with
different quantum chemical methods. At the closed shell
Hartree-Fock (HF) level, both the ring and the chain are
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not bound, the cohesive energy is positive. The equilib-
rium lattice constant at the HF level is about 5% smaller
than a0. A density-functional treatment with a LDA func-
tional [20] yields the same lattice constant as HF, but the
systems are bound. The LDA method works quite well for
the equilibrium ground-state properties, but cannot de-
scribe the dissociation limit in the systems. For that pur-
pose a multi-reference treatment is necessary with at least
as many active orbitals as there are atoms in the system.
We perform a MCSCF calculation with 11 active orbitals
both for the Na10 ring and chain. On top of it a MRACPF
calculation with single and double excitations using the
same active space is applied. The equilibrium distance
does not change much. The cohesive energy for the ring
is 2/3 due to static correlations (MCSCF) and 1/3 due to
dynamical correlations (MRACPF), whereas for the chain
the dynamical correlation provides more than half of the
cohesive energy. Comparing the MRACPF cohesive en-
ergy with the LDA one, we notice that LDA slightly over-
binds the system. Increasing the basis set should bring the
MRACPF and LDA values closer to each other.

When comparing the ring and the chain, we notice that
both have nearly the same lattice constant, but the bind-
ing in the chain is about 20% weaker. The cohesive energy
of the Na2 dimer with the same basis set is 0.0077 a.u. per
atom and therefore 23% weaker than the chain and 35%
weaker than the ring. Both can be regarded as a system of
5 dimers. Overall, the ring and the chain system have quite
similar equilibrium ground-state properties. The bound-
ary conditions have nearly no influence when the atoms
remain equidistant.

3.2 The characteristic features of the ground-state
wavefunction

We want to investigate how the character of the many-
body ground-state wavefunction changes when enlarging
the interatomic distance from a = 0.9a0 to a = 2.0a0. For
that purpose we perform a MCSCF calculation [21,22]
for the lowest singlet state, on top of a closed-shell HF
calculation. The selection of the active space is crucial:
For the Na10 ring we found (as for the Li system) that
not all important orbitals for the equilibrium distance
and the dissociation limit (10 important orbitals) fall into
the same irreducible representation. One of the impor-
tant orbitals at the equilibrium distance falls into a differ-
ent representation than the 10 orbitals of the dissociated
limit. Therefore, we select as common active space the
union of 11 orbitals. These orbitals were reoptimised at
the MCSCF level. Finally, we performed a MRACPF cal-
culation [11,12] on top of the MCSCF, in order to include
dynamical correlation effects as completely as possible.

For the Na10 chain we found that the 10 important or-
bitals of the dissociated state are in the same irreducible
representations as the 10 important orbitals at the equi-
librium distance. This is different to the ring system with
periodic boundary conditions. Therefore we perform here
a MCSCF calculation with 10 active orbitals and pro-
ceed with a MRACPF calculation as for the ring. For the
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Fig. 1. MRACPF energies of the Na10 ring and the Na10

chain versus the Na-Na distance. The curves labelled “insu-
lating solution” and “metallic solution” refer to different MC-
SCF zeroth-order wavefunctions used as reference for the sub-
sequent MRACPF, cf. text.

Na10 chain it is interesting to look at the net charge and
the p contribution of the charge population for the single
atoms. Near the equilibrium lattice constant the p popu-
lation is high (≈0.25) and quite constant for the 6 inner
atoms, and drops off for atoms belonging to the chain end.
Concerning the charge transfer to the open boundaries,
only the two inner atoms are almost neutral, whereas at
the boundary some oscillations smaller than 0.05e occur.
For an interatomic distance near the dissociation limit, the
oscillations in the net charge disappear, all atoms are neu-
tral. The p population is constant and quite small (≤0.04)
for all atoms.

Analyzing the ground state energy for the Na ring we
found as for the Li ring a kink in the total energy curve.
Although we included in the active space all orbitals which
are important in the limits of small and large atomic dis-
tances, the total energy as a function of the Na-Na dis-
tance is still not a smooth curve (Fig. 1), because the na-
ture of the active orbitals changes along the curve. There
is a curious hysteresis-like behaviour, namely when start-
ing the calculations from large a (wavefunction for the
insulating state) and always using the previous solution
as a starting point for the next smaller lattice constant,
this yields a slightly different solution in the region of the
MIT than when starting from the metallic regime and in-
creasing a. For the linear Na10 chain we found a smooth
curve, which coincides with the ring for large interatomic
distances, but is higher in energy for the equilibrium dis-
tance. To analyse the kink in the ring system in more
detail, we perform a Mulliken population analysis for the
p orbitals (Fig. 2) of the MRACPF wavefunction as well as
of the underlying MCSCF wavefunction as a function of a.
Whereas for the chain the p population increases smoothly
from the dissociation limit, in the ring system we found a
jump to significantly higher populations at 1.25a0 at the
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Fig. 2. The p occupation of the Na atom in a Na10 ring
and of the inner Na atom in a Na10 chain versus the Na-Na
distance. The p occupations are calculated using the Mulliken
population analysis.

MRACPF level and at 1.21a0 at the MCSCF level. If we
would characterize the metallicity by using the p popula-
tion analysis, we should pin the MIT in the region where
the jump of the p population occurs. But that would mean
that the chain system has no metallic character and only
the periodic boundary conditions force the system to be
metallic. Therefore we look in the following section at the
one-particle energy gap and compare for this quantity the
ring and the chain system.

3.3 The one-particle energy gap

The energy gap is determined by the energy difference
between the ground state of the neutral system and the
ground state of the systems with one electron added and
one subtracted. We calculate the MRACPF ground-state
energies of the Na−n , Nan and Na+

n systems and determine
EA=E(Nan)-E(Na−n ) and IP=E(Na+

n )-E(Nan), and from
IP-EA the corresponding gap. For a true metallic solid
adding and removing an electron costs an energy given
by the chemical potential. In finite systems, there always
remains the difference between the one-particle energies
of the additional and the missing electron as well as the
influence of relaxation and correlation effects.

For the Lin rings a finite-size analysis was per-
formed [2]. The gap energy monotonously decreases with
increasing number of atoms in the ring; a linear decrease
is found up to n = 12, the largest system that is pos-
sible to treat with MRACPF. For all investigated rings
(n = 2, 6, 8, 10, 12) we found similar behaviour with in-
creasing distance independent of the number of atoms in
the ring. In spite of this we reemphasize that, although
we have a finite system instead of a real metallic system,
we still see a transition from a metallic-like regime (where
the gap is closing with increasing Li-Li distance) to an
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Fig. 3. MRACPF values for the EA and IP of the Na10 ring,
the Na10 chain and the Na2 dimer versus the Na-Na distance.

insulating regime where the gap is opening towards the
atomic limit.

The EA and IP for the Na10 ring and chain, and for
comparison also for the Na2 dimer, are plotted in Figure 3.
For the dissociation limit where HF fails to describe cor-
rectly the dissociation, the MRACPF calculation yields
the correct atomic IP and EA for all systems evaluated.
The differences occur when decreasing the interatomic dis-
tance. For the Na2 dimer the gap is closing very slowly
and below a region of 1.4a0 it opens again slightly. For
the Na10 chain the gap is also closing smoothly, but much
faster than for the dimer. There the minimal gap occurs
at about 1.05a0. In the insulating regime the ring and the
chain system behave very similarly, but when decreasing
the interatomic distance the closing of the gap ends sud-
denly for the ring at that point, where the character of the
wavefunction changes. Starting from there, the gap opens
again and behaves like a free electron system in a box when
decreasing the box length. This opening of the gap would
not be so pronounced if we could perform computations
in a ring with more than 10 atoms.

The behaviour in the insulating regime is indepen-
dent of boundary conditions. At the equilibrium distance
(around a0) the gap for the chain is smaller by a factor of
2 than in the ring system. It is not easy to define a point
for the linear system, where the MIT occurs, but taking
the minimal gap as an indicator for the MIT transition,
the metallic like behaviour develops for the chain at much
smaller distances than for the ring. Overall the boundary
conditions do not change the qualitative picture, but have
a large influence on the quantitative one.

3.4 Lattice distortion

In this section we still study the pure Na system, but we
allow for a bond alternation along the ring and the chain,
so that the Na atoms can dimerise. For average lattice
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constants larger than that where the metal-insulator tran-
sition occurs (i.e., for lattice constants where the insulat-
ing solution is the ground state) the formation of dimers
is energetically favored, both for the ring and the chain
system. The energy gain is due to bond formation be-
tween two Na atoms. For the ring in the metallic regime
(a ≤ aMIT) a Peierls distortion [7] occurs, stabilizing the
dimerised state. However, decreasing the lattice constant
further, we find a point (a = 1.1a0 for Na10 ring) below
which the equidistant arrangement is the ground state,
which would imply a metallic state for the infinite chain.
This finding is analogous to the one reported for the Li
rings [2].

For the chain system we have a different result. There
a dimerisation occurs for all mean Na-Na distances. Even
for a mean distance smaller than the distance of the free
Na-Na dimer with the same basis set (0.9a0), the sys-
tems show a slight bond alternation. This is due to the
open boundary conditions, which favor bond alternation.
In comparison to the periodic boundary conditions, where
an equidistant arrangement is favored for the equilibrium
interatomic distance, the system with open boundaries al-
ways shows dimerisation. Here the boundary conditions
even have a qualitative effect on the system, and only for
infinite linear chains would the results coincide with the
ones of periodic boundary conditions.

4 Mixed NaLi ring – a realization of the ionic
Hubbard model

4.1 Hartree-Fock band structure

As a first step we study the HF band structure of the
one-dimensional infinite NaLi system and compare with
that of the pure Li and Na system. Using the Crystal pro-
gram [23] we perform HF calculations for one-dimensional
infinite chains. As a basis set in Crystal we select for Li
the optimized [4s3p1d] basis set of the three-dimensional
metal [24]. For Na we choose the [4s3p] basis from Dovesi
et al. [25] and add a diffuse sp-function with exponent 0.08
and a d-function with exponent 0.4. In Figure 4 the
Hartree-Fock (HF) band structure is shown for the opti-
mized interatomic Li-Na distance of 5.954 a.u. In addition
we plotted the back-folded Li and Na band-structure at
the same interatomic distances. The Fermi energy is al-
ways shifted for all systems to zero. The main difference
between NaLi and pure Na or Li occurs at the edge of
the Brillouin zone, where the pure Na or Li system has no
gap, whereas the mixed NaLi system has a gap of about
0.12 a.u. This clearly shows that NaLi is a band insula-
tor, whereas Li and Na are metals at the HF level. The
s and p mixing around the center of the Brillouin zone is
about the same for all systems. The population analysis
in the mixed system yield 3.41e for Li and 10.59e for Na,
i.e. nearly half an electron moves from the Na atom to the
Li atom. At the HF level the equidistant arrangement of
the Li and Na atoms is stable, no dimerisation occurs in
contrast to the pure Na or Li systems, whereas at the HF
level we found a Peierls distortion.
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Fig. 4. Hartree-Fock band structure for the infinite NaLi chain
and for the Li and Na chain back-folded to the NaLi Brillouin
zone. All systems calculated at the same lattice constant (in-
teratomic distance = 5.954 a.u.). The Fermi energy is set to
zero.

An enlargement of the interatomic distance would not
change the HF band structure significantly. The s and p
mixing will be reduced, but the LiNa system will remain
a band insulator, as Li and Na remain metallic. For an in-
teratomic distance equal to twice the equilibrium distance
the charge transfer from Na to Li is still 0.39e, which is
counterintuitive. One would expect instead neutral atoms
for such a large separation.

4.2 Character of the many-body wavefunction

To describe the dissociation limit in the mixed system, i.e.
the transition from a band insulator to the Mott insulator,
a many-body treatment is necessary. We select as a finite
system an equidistant Na5Li5 ring with a0 = 5.954 a.u. As
for the Na10 ring we perform a MCSCF calculation with
11 active orbitals, and on top of it a MRACPF calculation.
Analyzing the ground state energy for Na5Li5, we found as
for pure Li or Na rings a kink in the MRACPF total energy
curve for the Na5Li5 ring. Also here the quasi-degenerate s
and p orbitals yield a change in the character of the wave-
function. This is shown in more detail in the p-occupation
of the individual atoms (Fig. 5). The p population of the
Na and Li atom is high (greater than 0.2e) up to an inter-
atomic distance of about 1.5a0. It then jumps suddenly to
a value smaller than 0.1e. For the equilibrium interatomic
distance (1.05a0 for Na5Li5 ring at MRACPF level) the p
population is about 0.4 for both Li and Na atoms. As at
the HF level, we found a charge transfer from Na to Li.
At a0 the correlation treatment reduces the charge trans-
fer by a factor of 2 compared to HF. Whereas at the HF
level the charge transfer remains nearly constant for all in-
teratomic distances, the charge transfer at the MRACPF
level drops rapidly with increasing atomic distance, has
a local minimum at about 1.2a0 and then falls suddenly
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Fig. 5. The p occupation of the Na atom and the Li atom in a
Na5Li5 ring versus the Li-Na distance. In addition the charge
transfer from the Na atom to the Li atom is plotted. The p
occupations and the charge transfer are calculated with the
Mulliken population analysis with the MRACPF wavefunction.

when the character of the wavefunction changes. For well
separated atoms we reach the expected neutral atom limit.

In summary, we can characterize the region of the
band insulator as the region where we have significant
p-contribution in the many-body wavefunction, and the
region of the Mott insulator, where there is nearly no
charge transfer and the p-contribution in the wavefunc-
tions is negligible.

4.3 One-particle energy gap

As for the pure Na ring, we calculate the energy gap of the
Na5Li5 ring at the MRACPF level due to adding and sub-
tracting one electron to the system. The IP and the EA of
the Na5Li5 ring are plotted in Figure 6. For comparison
the pure Na and Li data are shown, too. In the Na5Li5
ring the minimal gap occurs at about 1.5aNaLi

0 , as it does
for the pure Li system whereas for Na the minimal gap is
at much smaller relative interatomic distances. The mixed
system is dominated by the features of the pure Li system
as there is a charge transfer from the Na to the Li atoms.
For the Mott insulator (larger interatomic distance than
that, where the minimal gap occurs) the pure and mixed
system behave in the same manner, namely the IP and EA
converge to the non-interacting atom limit. For the equi-
librium distance the EA is almost the same for all three
systems, whereas the IP is the largest for Li and the small-
est for Na. Comparing the NaLi with the Li system the
difference of the minimal gap to the gap at the equilibrium
distance is not so pronounced. Only for the “metallic” sys-
tems such as Li and Na is the closing of the gap faster than
in the band insulator NaLi. In other words, the electrons
in the pure systems behave more like free electrons than
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Fig. 6. MRACPF values for the EA and IP of the Na5Li5
ring, Na10 and Li10 ring versus the interatomic distance. The
scaling of the horizontal axis always refers to the a0 of the
individual system.

those in NaLi and feel stronger the effects of the finite
system than those in NaLi. This difference is expected to
be more pronounced when the rings get longer.

4.4 Dipole polarisability

As a third quantity which can be used to indicate the MIT,
we calculate the static electric dipole polarisability of the
system. For a metallic system the polarisability should be
infinite, therefore a steep increase of the polarisability can
indicate an insulator-metal transition. The increase of the
polarization approaching the MIT from the insulating side
was also found in the Hubbard model [26] named dielectric
catastrophe.

The static electric dipole polarisability of the NaLi
system is calculated by applying a static electric field of
strength up to 0.003 a.u. for the ring in the ring plane.
We perform a quadratic fit with linear term for the en-
ergy of the system, E(E) = E(0) + µE − 1

2αE2, yielding
the polarisability α and the permanent dipole moment µ.
In Figure 7 we plot the polarisability per atom for the
Na5Li5 and the pure Na10 and Li10 rings. The maximum
of the polarisability occurs for all systems where the mini-
mal gap occurs. The mixed system does not behave differ-
ently from the pure systems. The only difference for the
mixed system is a small permanent dipole moment. For
the equilibrium lattice constant it is about 0.07 a.u. and
therefore only about 1

10 of the dimer value with the same
basis set. The permanent dipole moment vanishes slowly
for larger interatomic distances.

4.5 Lattice distortion

Also for the mixed system we study the possibility of a lat-
tice distortion in the system. For interatomic distances in
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Fig. 7. The static dipole polarisability of the Na5Li5 ring,
Na10 and Li10 ring for the electric field in the ring plane is
plotted versus the interatomic distance for the MRACPF wave-
function. The scaling of the horizontal axis always refers to the
a0 of the individual system.

the Mott insulator regime the system dimerises and forms
Na-Li molecules. In the region of the band insulator we
found at the MRACPF level a dimerisation for a mean
interatomic distance larger than a = 1.3a0, below this
point the equidistant arrangement of the atoms is the sta-
ble configuration. 1.3a0 coincides with the charge transfer
minimum in the band insulator regime (see Fig. 5). This
is in agreement with results obtained from the ionic Hub-
bard model, where in a limited region between two critical
values of U

t the bond alternation is non zero [3,5].

5 Conclusions

We have investigated the analogue of the metal-insulator
transition for one-dimensional sodium and mixed lithium-
sodium, applying high level quantum chemical ab initio
methods. The MIT is modified from that of in the single-
band Hubbard model, when we have to deal with s and
p-orbitals per site. At the transition point the charac-
ter of the many-body wavefunction changes from signif-
icant p to essential s character. Therefore it must be kept
in mind that in a real solid the re-population of orbitals
belonging to different angular momenta may have simi-
larly strong influence on the MIT as changes in the ratio
of the Hubbard U to the kinetic energy. We found that at
approximately the same interatomic distance where the
p character of the wavefunction changes so strongly, the
one-particle energy gap is minimal.

For the pure sodium system we have analysed the in-
fluence of the boundary conditions by calculating a ring
system (periodic boundaries) and a chain system (open
boundaries). Whereas in the ring system during the tran-
sition the character of the wavefunction changes rapidly

from significant p to pure s character, the transition in
the chain system is smooth. Nevertheless a steep decrease
of the p contribution is found for increasing interatomic
distances. The boundary conditions have no qualitative
influence on the one-particle energy gap as a function of
the interatomic distance. The position however where the
minimal gap occurs, and the value of the minimal gap,
are strongly dependent on the boundary conditions. In the
ring system a bond alternation only occurs above an inter-
atomic distance aPeierls (a0 ≤ aPeierls ≤ aMIT) whereas the
system with open boundaries dimerises for all interatomic
distances.

In the second part we have evaluated the same prop-
erties for the mixed lithium-sodium system. As for pure
systems, the character of the wavefunction changes from
significant p contribution to pure s contribution. In addi-
tion the charge transfer from sodium to lithium is nearly
zero above the transition from a band to a Mott insulator.
The energy gap and the dipole polarisability are not much
different from those of the pure systems. This is probably
due to the fact that finite sodium or lithium rings are not
real metals at the equilibrium distance, but behave more
like band insulators with a small band gap. Therefore the
features we observe are due to different band gaps in the
systems rather than to a true qualitative change from a
metal to an insulator. As in the pure systems a bond al-
ternation is found in a region below the band to Mott
insulator transition, but the dimerisation vanishes below
an interatomic distance of 1.3a0. This is in agreement with
earlier results for the ionic Hubbard model [3,5].

To analyse these properties in more detail and to ap-
proach the true metallic regime, much longer systems have
to be evaluated. Unfortunately this is not possible us-
ing straightforward high-level quantum chemical methods.
Some further approximations are necessary, e.g. the appli-
cation of an incremental scheme as was used for neutral
lithium rings [27].

The authors would like to thank Prof. Peter Fulde (Dresden),
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from J. Almlöf, R.D. Amos, A. Bernhardsson, A. Berning,
P. Celani, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F.
Eckert, C. Hampel, G. Hetzer, T. Korona, R. Lindh, A.W.
Lloyd, S.J. McNicholas, F.R. Manby, W. Meyer, M.E.
Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M.
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